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Introduction 

• THz  science  is  a rich  field with the  potential  to  advance  research  in  

many scientific areas.  

• Very strong interests exist in combining THz radiation with X-ray FELs for 

pump-probe experiments 

 



THz gap (1 to 20 THz) 

• Laser-based sources have made significant progress, but very 

challenging to reach above a few THz. 

• Accelerator based sources are well suited for high-field, high-

frequency, high-rep. rate THz applications 
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Our method (Z. Zhang et al., Phys. Rev. AB 20, 050701, 2017) 
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• We propose a method based on the slice energy spread modulation to generate 

density bunching in a relativistic electron beam (a la laser heater setup) 

 

 

 

 

 

 

 

Amplitude-Modulated laser pulse 

• Similar method has been used in storage ring THz generation 

S. Bielawski et al. Nature Physics, 4(5), 390-393 (2008). 

C. Evain et al., PRSTAB 13, 090703 (2010). 

THz radiator 



Theory 
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• The density modulation appears after the chicane with the bunching factor as follows 

• Using the Liouville theorem 𝑓 𝛿, 𝑧 = 𝑓0 𝛿0, 𝑧0 , 𝑑𝛿𝑑𝑧 = 𝑑𝛿0𝑑𝑧0, and making a change of 

variable from 𝛿0 to 

𝜂 =
𝛿0

1 + 𝐴sin(𝑘0𝑧0)
 

we can obtain 



Theory 
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• Integration over 𝑧0 yields nonvanishing bunching at the wavenumber  

with the bunching factor 

• Numerical calculation can be used to find the exact bunching factor and current 

distribution. 

• The maximum bunching factor available is ~0.27 

• For 𝑥 < 3 

• The optimal chicane setting is to satisfy 
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• The derivations above assume the beam has a Gaussian slice energy distribution, 

which is not always true in the laser heater. 

• When the laser waist size in the undulator is much larger than the beam size, the 

resulting energy profile is a double-horn distribution 

Z. Huang et al., PRST-AB 7, 074401 (2004) 

Z. Huang et al., PRST-AB 13, 020703 (2010) 

• We find that the double-horn energy distribution 

is more effective to increase the bunching factor 

in our study. 

• The maximum bunching factor is up to ~0.4!! 



Theory 
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• Phase spaces of Gaussian and double-horn distributions when yielding maximum 

bunching factor 

Gaussian Double-horn 

𝑏1 ≈ 0.27 𝑏1 ≈ 0.4 

• Significant second harmonic bunching (~0.25) can be used to reach 

higher THz frequencies  



Simulation setup 
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• We use the code ELEGANT to simulate the laser modulation and beam dynamics 

• The laser pulse train can be generated by the chirped pulse beating or pulse stacking 

period 𝑇 = 0.5ps 
frequency f0 = 2 THz 

𝜎𝑡 = 60fs 

• The simulation starts from the exit of Linac1 to the end. The acceleration phase of Linac2 is 

-/+90 degrees to only add energy chirp, but does not change the beam energy. 



Simulation parameters 
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• Simulation parameters (LCLS injector) 



Simulation results 
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• 2THz, scan 𝑅56, parameters: 𝑃 = 1𝐺𝑊, 𝜎 = 190keV 1.4 × 10−3  

• Laser peak power P = 100 MW with a smaller transverse cross section works just fine. 

• The optimal condition |𝑘1𝜎 𝑅56| ≈ 1.75 

predicts the optimal chicane is -29.4mm, 

consisting with the simulations (-29mm). 

 

• The peak current stays constant with 

larger R56. 

• The longitudinal phase space 

and current profile when the 

𝑅56 = −29mm (optimal 

bunching) 



Higher THz frequencies 
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• In the range of 1THz to 3THz, the bunching 

factor are all around 0.4. 

• The frequency range is limited by the 

nonlinear effects in beam compression. 

• If we use an X-band cavity (to linearize LPS) 

before the chicane, the frequency range with 

large bunching factor can be extended 

significantly. 

• For 4THz initial modulation case: 

with X-band: 1~10 THz 

without X-band: 3~5 THz 

• We also give the required parameters for 

different frequencies, including the X-band 

cavity energy. 

• More bunch compression can yield 

      >10 THz. 



Stand-alone compact accelerator-based Thz source 
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Parameter Value 

  E-beam charge 

Beam energy 

RMS beam size 

1 nC 

50 MeV 

0.2 mm 

Bunch length (flattop) 10 ps 

Modulator 

Undulator period  

Peak field/ K value 

Undulator length/period 

Laser wavelength 

Laser RMS spot size 

Laser stacking separation 

Laser peak power 

 

2.5 cm 

0.56 T /1.29 

0.5 m / 20 

800 nm 

0.5 mm 

0.5 ps (2 THz) 

100 MW 

• Compact accelerator of ~50 MeV interacts with a 800-nm laser in the undulator 

• Laser-electron interaction through 3rd harmonic (for a planar undulator with 

fundamental resonant wavelength 2.4 mm. )  

OPCPA laser at high-rep. rate  

(100 kHz, 100 W average power) 

 2 3
0
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r
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P


 


Relative energy modulation 



50 MeV simulation results 
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Laser 

Modulator 
Linac for  

chirp control 

 

Bunch 

compressor 
Matching 

section(Q1-Q2) 

Radiator 

ELEGANT [unit: m] 

Before bunch compressor 

(2 THz modulation 

rms Espread=0.15%) 

After bunch 

compressor 

(bunching=0.37) 

After matching 

section 

(bunching=0.34) 

Courtesy Koichi Kan  



THz radiation 
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• Transition radiation foil is the simplest radiator. CTR energy ~10 uJ (5% 

bandwidth) with 1 nC charge. 

 

• For a helical wiggler (lw =15 cm, Kw = 4.3), resonant wavelength at 50 

MeV is lr = 150mm (2 THz).  

- Radiation pulse energy for a thin beam (large diffraction regime) 

 

 

   Saldin, Schneidmiller, Yurkov, NIMA539, 499 (2005) 

 Wb is the beam power (50 mJ at 1 nC), ain = 2b = 0.68, I = 100 A, 

 Nw=20 (3 m wiggler)  THz pulse energy W0 = 140mJ 

 

• Undulator in a waveguide or a dielectric tube may be more efficient 

radiators 

 

 

 

w 

w 
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FERMI experiments 

Interference of two chirped pulses 

Beating frequency/wavelength = 2.37737 THz/126.103 um   

E. Roussel et al., PRL 115, 214801 (2015)) 



   E. Roussel et al., IPAC’17 
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   E. Roussel et al., IPAC’17 

By changing laser power (or by dispersion strength) 



Proposed Tsinghua University experiment 
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Gun 

Linac 
Chicane THz undulator 

Chamber 

Quad 

Experimental configuration and goal (demonstrate this concept at 50 MeV) 

Undulator period 2.5 cm, K=1.3. Third harmonic resonant wavelength is 800 nm 

Total beamline length ~10 m, a  very compact setup! 
Z. Zhang et al., 



24 

Modulator 

(works at 3rd 

harmonic) 

chicane THz undulator 

Tsinghua University experimental status 

Z. Zhang et al.,  



Outline 

25 

 Introduction 

 

 Proposed THz source 

• Theory 

• Simulation 

• Radiation generation 

 

 Recent experimental studies 

 

 Discussions and summary 



Discussions 
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• Based on the slice energy spread modulation method, the bunching factor 

can be kept around 0.4 for a wide frequency range (1-10 THz) and can be 

extended to 20 Thz by compression or by taking advantage of the second 

harmonic bunching. 

• THz pulse energy is estimated to be tens of uJ to hundreds of uJ. 

• The method is also applicable for the electron beams from storage rings, 

ERL, or even thermal-cathode injectors with higher repetition rate. 

• Laser envelope shaping can be applied to shape THz field 

A. Marinelli et al., PRL 116 25480 (2016) 



High-rep. Rate Stand-alone THz source 
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• Stand-alone THz source at the experimental area (XFEL, LCLS-II) 

• Use LCLS-II spare gun + accel. cryomodule (50 MeV) for a high-rep. rate 

compact accelerator 

• E-beam power is similar to LCLS-I (5-10 kW) and requires LCLS-I type of 

shielding 

• Leverage OPCPA laser at LCLS-II R&D (800 nm, 0.1 -1 MHz, 100 W) 

• Expect good synchronization with hutch lasers (both through OPCPA) 

• Strong THz field may be used in the LCLS(-II) TimeTool to cross-correlate 

with optical signals (and X-rays) for jitter corrections 

 

• THz pulse form can be controlled by both laser and e-beam techniques 

(narrowband, chirped, a few cycle pulses, all possible) 

• Flexible, powerful, high-rep. rate THz, well-synchronized with X-rays.   
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